Respuesta :
Answer:
Diverges.
Step-by-step explanation:
Given that your sum is
[tex]{\displaystyle \sum\limits_{k=2}^{\infty} \frac{1}{\sqrt{k-1}}[/tex]
notice that
[tex]{\displaystyle \frac{1}{k-1} \leq \frac{1}{\sqrt{k-1}}[/tex]
Since
[tex]{\displaystyle \sum\limits_{k=2}^{\infty} \frac{1}{k-1} \,\,\,\,\,\,\,\text{diverges}[/tex]
using the comparison test
[tex]{\displaystyle \sum\limits_{k=2}^{\infty} \frac{1}{\sqrt{k-1}}[/tex]
diverges.
Answer:
Check the explanation
Step-by-step explanation:
Kindly check the attached image below to see the step by step explanation to the question above.
