Respuesta :

Answer:

[tex]\int_{0}^{1}\left( - \frac{3 u^{9}}{2} + \frac{2 u^{4}}{5} + 2 \right)du=\frac{193}{100}=1.93[/tex].

Step-by-step explanation:

To find [tex]\int_{0}^{1}\left( - \frac{3 u^{9}}{2} + \frac{2 u^{4}}{5} + 2 \right)du[/tex].

First, calculate the corresponding indefinite integral:

Integrate term by term:

[tex]\int{\left(- \frac{3 u^{9}}{2} + \frac{2 u^{4}}{5} + 2\right)d u}} =\int{2 d u} + \int{\frac{2 u^{4}}{5} d u} - \int{\frac{3 u^{9}}{2} d u}[/tex]

Apply the constant rule [tex]\int c\, du = c u[/tex]

[tex]\int{2 d u}} + \int{\frac{2 u^{4}}{5} d u} - \int{\frac{3 u^{9}}{2} d u} = {\left(2 u\right)} + \int{\frac{2 u^{4}}{5} d u} - \int{\frac{3 u^{9}}{2} d u}[/tex]

Apply the constant multiple rule [tex]\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du[/tex]

[tex]2 u - {\int{\frac{3 u^{9}}{2} d u}} + \int{\frac{2 u^{4}}{5} d u} = 2 u - {\left(\frac{3}{2} \int{u^{9} d u}\right)} + \left(\frac{2}{5} \int{u^{4} d u}\right)[/tex]

Apply the power rule [tex]\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}[/tex]

[tex]2 u - \frac{3}{2} {\int{u^{9} d u}} + \frac{2}{5} {\int{u^{4} d u}}=2 u - \frac{3}{2} {\frac{u^{1 + 9}}{1 + 9}}+ \frac{2}{5}{\frac{u^{1 + 4}}{1 + 4}}[/tex]

Therefore,

[tex]\int{\left(- \frac{3 u^{9}}{2} + \frac{2 u^{4}}{5} + 2\right)d u} = - \frac{3 u^{10}}{20} + \frac{2 u^{5}}{25} + 2 u = \frac{u}{100} \left(- 15 u^{9} + 8 u^{4} + 200\right)[/tex]

According to the Fundamental Theorem of Calculus, [tex]\int_a^b F(x) dx=f(b)-f(a)[/tex], so just evaluate the integral at the endpoints, and that's the answer.

[tex]\left(\frac{u}{100} \left(- 15 u^{9} + 8 u^{4} + 200\right)\right)|_{\left(u=1\right)}=\frac{193}{100}[/tex]

[tex]\left(\frac{u}{100} \left(- 15 u^{9} + 8 u^{4} + 200\right)\right)|_{\left(u=0\right)}=0[/tex]

[tex]\int_{0}^{1}\left( - \frac{3 u^{9}}{2} + \frac{2 u^{4}}{5} + 2 \right)du=\left(\frac{u}{100} \left(- 15 u^{9} + 8 u^{4} + 200\right)\right)|_{\left(u=1\right)}-\left(\frac{u}{100} \left(- 15 u^{9} + 8 u^{4} + 200\right)\right)|_{\left(u=0\right)}=\frac{193}{100}[/tex]