En el triángulo rectángulo que se muestra, \angle A = 30^\circ∠A=30 ∘ angle, A, equals, 30, degrees y BC = 6BC=6B, C, equals, 6. ¿Cuánto mide ABABA, B?

Respuesta :

Answer:

The measure of side AB is 6√3 cm.

Step-by-step explanation:

The question is:

In the right triangle shown, ∠A = 30° and BC = 6. What is AB?

Solution:

Consider the right-angled triangle ABC below.

In the triangle:

∠A = 30°

∠B = 90°

BC = 6 cm

According to the trigonometric identities for a right-angled triangle the tangent of an angle is the ratio of the length of perpendicular side to the length of the base.

That is for angle θ° the value of tan θ° is:

[tex]tan\ \theta^{\text{o}}=\frac{Perpendicular}{Base}[/tex]

In the triangle ABC, the perpendicular side is side BC and the base is AB.

Compute the length of side AB as follows:

[tex]tan\ 30^{\text{o}}=\frac{BC}{AB}[/tex]

The value of tan 30° is,

[tex]tan\ 30^{\text{o}}=\frac{1}{\sqrt{3}}[/tex]

The value of side AB is:

[tex]tan\ 30^{\text{o}}=\frac{BC}{AB}[/tex]

      [tex]\frac{1}{\sqrt{3}}=\frac{6}{AB}\\\\AB=6\times \sqrt{3}\\AB=6\sqrt{3}[/tex]

Thus, the measure of side AB is 6√3 cm.