Respuesta :

Answer:

The minimum sample size required is [tex](376.59\ \sigma^{2})[/tex].

Step-by-step explanation:

The (1 - α) % confidence interval for population mean is:

 [tex]CI=\bar x\pm z_{\alpha /2}\ \frac{\sigma}{\sqrt{n}}[/tex]

The margin of error for this interval is:

 [tex]E= z_{\alpha /2}\ \frac{\sigma}{\sqrt{n}}[/tex]

The information provided is:

 E = 0.101

Confidence level = 95%

α = 5%

Compute the critical value of z for α = 5% as follows:

 [tex]z_{\alpha/2}=z_{0.05/2}=z_{0.025}=1.96[/tex]

*Use a z-table.

Compute the sample size required as follows:

     [tex]E= z_{\alpha /2}\ \frac{\sigma}{\sqrt{n}}[/tex]  

       [tex]n=[\frac{z_{\alpha/2}\times \sigma}{E}]^{2}[/tex]

          [tex]=[\frac{1.96\times \sigma}{0.101}]^{2}\\\\=376.59\times \sigma^{2}[/tex]

Thus, the minimum sample size required is [tex](376.59\ \sigma^{2})[/tex].