Answer:
[tex]A(t) = 2.2\sin \frac{(t - 2)\pi }{6} + 0.6[/tex]
Step-by-step explanation:
Let the function of quantity in the lung of air be A(t)
So [tex]A(t) \alpha \sin (\frac{t - \alpha }{k} )[/tex]
so, A(t) = Amax sin t + b
A(t) = 2.8t⇒ max
A(t) = 0.6t ⇒ min
max value of A(t) occur when sin(t) = 1
and min value of A(t) = 0
So b = 0.6
and A(max) = 2.2
[tex]A(t) = 2.2\sin \frac{(t)}{k} + 0.6[/tex]
at t = 2 sec volume of a is 0.6
So function reduce to
[tex]A(t) = 2.2\sin \frac{(t - 2)}{k} + 0.6[/tex]
and t = 5 max value of volume is represent
so,
[tex]\sin \frac{t - \alpha }{k} = 1[/tex]
[tex]\frac{t - 2}{k} = \frac{\pi }{2}[/tex] when t = 5
[tex]\frac{6}{\pi } = k[/tex]
so the equation becomes
[tex]A(t) = 2.2\sin \frac{(t - 2)\pi }{6} + 0.6[/tex]