Respuesta :
Answer:
[tex]x_1 = 7\\x_2 = 6[/tex]
Step-by-step explanation:
To find x₁ and x₂ :
[tex]\left[\begin{array}{ccc}-4&1\\5&4\\\end{array}\right] \times \left[\begin{array}{ccc}x_1\\x_2\\\end{array}\right] + \left[\begin{array}{ccc}11\\-19\\\end{array}\right] = \left[\begin{array}{ccc}-11\\40\\\end{array}\right][/tex]
Step 1
Multiply first 2 x 2 matrix with 2 x 1 vector, we get
[tex]\left[\begin{array}{ccc}-4x_1&+ x_2\\5x_1&+ 4x_2\\\end{array}\right] + \left[\begin{array}{ccc}11\\-19\\\end{array}\right] = \left[\begin{array}{ccc}-11\\40\end{array}\right][/tex]
Step 2
Add the 2 x 1 matrices on LHS, we get
[tex]\left[\begin{array}{ccc}-4x_1&+x_2&+11\\5x_1&+4x_2&-19\\\end{array}\right] = \left[\begin{array}{ccc}-11\\40\end{array}\right][/tex]
Step 3,
we get
[tex]-4x_1 + x_2 + 11 = -11[/tex]
and
[tex]5x_1 + 4x_2-19=40[/tex]
Step 4,
Simplify, we get
[tex]-4x_1+x_2=-22----(1)\\ 5x_1+4x_2=59----(2)[/tex]
Step 5,
multiply eqn(1) by 4
we get
[tex]16x_1+4x_2=-88[/tex]
Step 6,
eqn (2) - eqn(3)
we get
[tex]21x_1 = 147\\x_1 =\frac{147}{21} \\x_1= 7[/tex]
substituting in eqn (1), we get
[tex](-4 \times 7) + x_2 = -22[/tex]
so, we get
[tex]x_2 = 6[/tex]
Therefore
[tex]x_1 = 7\\x_2 = 6[/tex]