Respuesta :
A= 3, and 4. (c & d)
1. Solve the Equation: [tex]3(x - 1) + 4 = 2 - (x + 3)\\[/tex], to get
------------------------------------------
1a. Use the distributive property to multiply 3 by x−1.
[tex]3x−3+4=2−(x+3)[/tex]
1b. Add −3 and 4 to get 1.
[tex]3x+1=2−(x+3)[/tex]
1c. To find the opposite of x+3, find the opposite of each term.
[tex]3x+1=2−x−3[/tex]
1d. Subtract 3 from 2 to get −1.
[tex]3x+1=−1−x[/tex]
1e. Add x to both sides.
[tex]3x+1+x=−1[/tex]
1f. Combine 3x and x to get 4x.
[tex]4x+1=−1[/tex]
1g. Subtract 1 from both sides.
[tex]4x=−1−1[/tex]
1h. Subtract 1 from −1 to get −2.
[tex]4x=−2[/tex]
1i. Divide both sides by 4.
[tex]x=4−2[/tex]
1j. Reduce the fraction 4−2=−0.5 to lowest terms by extracting and canceling out 2.
[tex]x=−21[/tex] or x = -21
-------------------------------------
Now that you know the answers, solve the others:
2. A= 1, so this is wrong. How I solved it is shown below:
-----------------------------------
1a. Add −3 and 4 to get 1.
3x+1=2−x+3
1b. Add 2 and 3 to get 5.
3x+1=5−x
1c. Add x to both sides.
3x+1+x=5
1d. Combine 3x and x to get 4x.
4x+1=5
1e. Subtract 1 from both sides.
4x=5−1
1f. Subtract 1 from 5 to get 4.
4x=4
1g.Divide both sides by 4.
x=44
1h. Divide 4 by 4 to get 1.
x=1
----------------------------
3. A= .5, so it is Correct. Work below
-----------------------------
3a. Add x to both sides.
[tex]3x+3+x=5[/tex]
3b. Combine 3x and x to get 4x.
[tex]4x+3=5[/tex]
3c. Subtract 3 from both sides.
[tex]4x=5−3[/tex]
3d. Subtract 3 from 5 to get 2.
[tex]4x=2[/tex]
3e. Divide both sides by 4.
[tex]x=42[/tex]
3f. Reduce the fraction 42=0.5 to lowest terms by extracting and canceling out 2.
[tex]x=21[/tex] (A = 1/2 or .5)
-----------------------------
4. A= .5, so it is correct. Work below. Now we have our 2, so we don't need to do it again.
-------------------------------
4a. Add −1 and 4 to get 3.
[tex]3x+3=2−x+3[/tex]
4b. Add 2 and 3 to get 5.
[tex]3x+3=5−x[/tex]
4c. Add x to both sides.
[tex]3x+3+x=5[/tex]
4d. Combine 3x and x to get 4x.
[tex]4x+3=5[/tex]
4e. Subtract 3 from both sides.
[tex]4x=5−3[/tex]
4f. Subtract 3 from 5 to get 2.
[tex]4x=2[/tex]
4g. Divide both sides by 4.
[tex]x=\frac{2}{4}[/tex]
4h. Reduce the fraction 42=0.5 to lowest terms by extracting and canceling out 2.
[tex]x=\frac{1}{2}[/tex]