Respuesta :

Answer:

[tex] cot x = \frac{cos x}{sin x}[/tex]

[tex] cos x \frac{cos x}{sin x} + sin x[/tex]

[tex] \frac{cos^2 x}{sin x} +sin x[/tex]

[tex] sin^2 x + cos^2 x =1 [/tex]

Solving for [tex]cos^2 x[/tex] we got [tex] cos^2 x =1 -sin^2 x[/tex] and replacing this we got:

[tex] \frac{1-sin^2 x}{sin x} +sin x [/tex]

[tex] \frac{1}{sin x} -\frac{sin^2 x}{sin x} +sin x[/tex]

[tex] csc x -sin x + sin x = csc x[/tex]

And then the best option for this case would be:

b.csc x

Step-by-step explanation:

For this case we have the following expression given:

[tex] cos x cot x + sin x [/tex]

We know from math properties that the definition for cot is [tex] cot x = \frac{cos x}{sin x}[/tex]

If we use this definition we got:

[tex] cos x \frac{cos x}{sin x} + sin x[/tex]

[tex] \frac{cos^2 x}{sin x} +sin x[/tex]

Now we can use the following identity:

[tex] sin^2 x + cos^2 x =1 [/tex]

Solving for [tex]cos^2 x[/tex] we got [tex] cos^2 x =1 -sin^2 x[/tex] and replacing this we got:

[tex] \frac{1-sin^2 x}{sin x} +sin x [/tex]

[tex] \frac{1}{sin x} -\frac{sin^2 x}{sin x} +sin x[/tex]

[tex] csc x -sin x + sin x = csc x[/tex]

And then the best option for this case would be:

b.csc x