If θ is an angle in standard position and its terminal side passes through the point (-5,-6), find the exact value of
sec

θ
secθ in simplest radical form.

Respuesta :

Answer:

[tex]\sec \theta = -\frac{\sqrt{61}}{5}[/tex]

Step-by-step explanation:

The secant can be found by the following trigonometric relation:

[tex]\sec \theta = \frac{1}{\cos \theta}[/tex]

[tex]\sec \theta = \frac{1}{\frac{x}{r} }[/tex]

[tex]\sec \theta = \frac{r}{x}[/tex]

[tex]\sec \theta = \frac{\sqrt{x^{2}+y^{2}}}{x}[/tex]

[tex]\sec \theta = \frac{\sqrt{(-5)^{2}+(-6)^{2}}}{(-5)}[/tex]

[tex]\sec \theta = -\frac{\sqrt{61}}{5}[/tex]