Suppose that the function g is defined, for all real numbers, as follows.


g(x)= { -1/4x +1 If x< -2

-(x+1)^2+1 If -2 ≤ x ≤ 2

2 If x>2

Find g(-2), g(-1), and g(4)

Respuesta :

Answer:

a) g(-2) = 0

b) g(-1) =1

c) g(4) = 2

Step-by-step explanation:

Given data

[tex]g(x) = \frac{-1}{4x+1} if x < -2[/tex]

[tex]g(x) = - (x+1)^{2} +1 if -2\leq x\leq 2[/tex]

[tex]g(x) = 2 if x >2[/tex]

Step( i ):-

[tex]g(x) = - (x+1)^{2} +1 if -2\leq x\leq 2[/tex]

put x = -2

[tex]g(-2) = -(-2+1)^{2} +1 = -(-1)^{2}+1 = -1+1 =0[/tex]

g(-2) = 0

Step(ii):-

[tex]g(x) = - (x+1)^{2} +1 if -2\leq x\leq 2[/tex]

Put x = -1

[tex]g(-1) = -(-1+1)^{2} +1 = -(0)^{2}+1 = -0+1 =1[/tex]

g(-1) =1

Step(iii):-

[tex]g(x) = 2 if x >2[/tex]

g(4) = 2