Respuesta :

The identity [tex]\tan^2x = \frac{1 -\cos 2x}{1 + \cos 2x}[/tex] is true

How to prove or disprove the identity?

The identity is given as:

[tex]\tan^2x = \frac{1 -\cos 2x}{1 + \cos 2x}[/tex]

As a general rule;

[tex]\cos 2x = 1 - 2\sin^2 x = 2\cos^2x - 1[/tex]

So, we have:

[tex]\tan^2x = \frac{1 -(1 - 2\sin^2 x)}{1 + (2\cos^2x - 1)}[/tex]

Remove the brackets

[tex]\tan^2x = \frac{1 -1 + 2\sin^2 x}{1 + 2\cos^2x - 1}[/tex]

Evaluate the like terms

[tex]\tan^2x = \frac{2\sin^2 x}{2\cos^2x}[/tex]

Divide 2 by 2

[tex]\tan^2x = \frac{\sin^2 x}{\cos^2x}[/tex]

The above equation is true because:

[tex]\tanx = \frac{\sin x}{\cosx}[/tex]

Hence, the identity [tex]\tan^2x = \frac{1 -\cos 2x}{1 + \cos 2x}[/tex] is true

Read more about trigonometry identity at:

https://brainly.com/question/10714482

#SPJ1