Respuesta :

Answer:

The ratio representing the tangent of T is 7 : 24.

Step-by-step explanation:

Consider the right angles triangle STU below.

In the triangle STU, the angle U is 90°.

The measure of the sides are as as follows:

Perpendicular = SU = 7 units

Base = UT = 24 units

Hypotenuse = TS = 25 units.

According to the Pythagorean theorem,

Hypotenuse² = Perpendicular² + Base²

Check if the above measurements satisfies the theorem or not.

Hypotenuse² = Perpendicular² + Base²

        (25)²      =            (24)²        +  (7)²  

        625       =            576          +  49

        625       =            625

Thus, the measurements are correct.

Now according to the trigonometric identities for a right angles triangle, the tangent of an angle is:

[tex]tan\ \theta=\frac{Perpendicular}{Base}[/tex]

Compute the tangent of angle T as follows:

[tex]tan\ \text{T}=\frac{SU}{UT}[/tex]

[tex]tan\ \text{T}=\frac{7}{24}[/tex]

Thus, the ratio representing the tangent of T is 7 : 24.

Ver imagen warylucknow