Respuesta :

Answer:

2sqrt(10)

Step-by-step explanation:

| 2 - 6i |

sqrt[2² + (-6)²]

sqrt(4 + 36)

sqrt(40)

2sqrt(10)

sqrt: square root

The value of the modulus of 2−6i is   [tex]2\sqrt{10}[/tex]

Complex number

A complex number of the form a+ib , where 'a' is the real part and 'b' is the

imaginary part

Modulus of a complex number

The modulus of a complex number is equal to the square root of the sum of the squares of the real part and the imaginary part .

[tex]|z|=\sqrt{a^2+b^2}[/tex]

given complex number is 2 - 6i

From the given complex number, a=2  and b= -6

[tex]z=2- 6i\\\|z|=\sqrt{(2)^2+(-6)^2} \\|z|=\sqrt{4+36}= \sqrt{40} =2\sqrt{10}[/tex]

Learn more information about 'Modulus' here :

brainly.com/question/25925813