Respuesta :
Answer:
2sqrt(10)
Step-by-step explanation:
| 2 - 6i |
sqrt[2² + (-6)²]
sqrt(4 + 36)
sqrt(40)
2sqrt(10)
sqrt: square root
The value of the modulus of 2−6i is [tex]2\sqrt{10}[/tex]
Complex number
A complex number of the form a+ib , where 'a' is the real part and 'b' is the
imaginary part
Modulus of a complex number
The modulus of a complex number is equal to the square root of the sum of the squares of the real part and the imaginary part .
[tex]|z|=\sqrt{a^2+b^2}[/tex]
given complex number is 2 - 6i
From the given complex number, a=2 and b= -6
[tex]z=2- 6i\\\|z|=\sqrt{(2)^2+(-6)^2} \\|z|=\sqrt{4+36}= \sqrt{40} =2\sqrt{10}[/tex]
Learn more information about 'Modulus' here :
brainly.com/question/25925813