Air as an ideal gas enters a diffuser operating at steady state at 5 bar, 280 K with a velocity of 510 m/s. The exit velocity is 120 m/s. For adiabatic operation with no internal irreversibility, determine the exit temperature, in K, and the exit pressure, in bar, for (a) Constant specific heats with k

Respuesta :

Answer:

Explanation:

Calculating the exit temperature for K = 1.4

The value of [tex]c_p[/tex] is determined via the expression:

[tex]c_p = \frac{KR}{K_1}[/tex]

where ;

R = universal gas constant = [tex]\frac{8.314 \ J}{28.97 \ kg.K}[/tex]

k = constant = 1.4

[tex]c_p = \frac{1.4(\frac{8.314}{28.97} )}{1.4 -1}[/tex]

[tex]c_p= 1.004 \ kJ/kg.K[/tex]

The derived expression from mass and energy rate balances reduce for the isothermal process of ideal gas is :

[tex]0=(h_1-h_2)+\frac{(v_1^2-v_2^2)}{2}[/tex]     ------ equation(1)

we can rewrite the above equation as :

[tex]0 = c_p(T_1-T_2)+ \frac{(v_1^2-v_2^2)}{2}[/tex]

[tex]T_2 =T_1+ \frac{(v_1^2-v_2^2)}{2 c_p}[/tex]

where:

[tex]T_1 = 280 K \\ \\ v_1 = 510 m/s \\ \\ v_2 = 120 m/s \\ \\c_p = 1.0004 \ kJ/kg.K[/tex]

[tex]T_2= 280+\frac{((510)^2-(120)^2)}{2(1.004)} *\frac{1}{10^3}[/tex]

[tex]T_2 = 402.36 \ K[/tex]

Thus, the exit temperature = 402.36 K

The exit pressure is determined by using the relation:[tex]\frac{T_2}{T_1} = (\frac{P_2}{P_1})^\frac{k}{k-1}[/tex]

[tex]P_2=P_1(\frac{T_2}{T_1})^\frac{k}{k-1}[/tex]

[tex]P_2 = 5 (\frac{402.36}{280} )^\frac{1.4}{1.4-1}[/tex]

[tex]P_2 = 17.79 \ bar[/tex]

Therefore, the exit pressure is 17.79 bar