Respuesta :

Answer:

The seventh term of a G.P is

[tex]t_{7} = 33,097.211[/tex]

Step-by-step explanation:

step(i):-

Given the second term of a G.P is '4'

The general term of nth term is

[tex]t_{n} = ar^{n-1}[/tex]

[tex]t_{4} = ar^{4-1} =4[/tex]  

[tex]ar^{3} =4[/tex] …(i)    

Also Given the fifth term of a G.P is '81'

[tex]t_{5} = ar^{5-1} =81[/tex]

[tex]ar^{4} =81[/tex]  …(ii)      

Step(ii):-

Dividing the equation (ii) divided by (i)

[tex]\frac{ar^{4} }{ar^{3} } = \frac{81}{4}[/tex]

cancellation ' a' and 'r' terms , we get

[tex]r = \frac{81}{4}=20.25[/tex]

substituting 'r' Value in equation (i), we get

[tex]ar^{3} =4[/tex]

[tex]a(\frac{81}{4}) ^{3} =4[/tex]  

[tex]a = \frac{4X4X4X4}{(81)^{3} }= \frac{256}{531,441}[/tex]

a = 0.00048

Step(iii):-

The seventh term of G.P

The general term of nth term is

[tex]t_{n} = ar^{n-1}[/tex]

[tex]t_{7} = (0.00048)(20.25)^{7-1}[/tex]

[tex]t_{7} = (0.00048)(20.25)^{6}= 33,097.211[/tex]