Respuesta :
Answer:
2.4 mm
Explanation:
Given that:
Initial Original length of the wire L = 3 mm
The stretch of the first wire ΔL= 1. 2 mm
The length of the second wire L'' = 6 mm
The stretch of the second wire ΔL'' = ???
Considering the Tension of the system; the Young modulus and the cross sectional remains constant ; as such:
[tex]\frac{Y}{Y''} = \frac{FL}{A \Delta L} *\frac{A \Delta L''}{FL''}[/tex]
[tex]1= \frac{L \Delta L''}{L'' \Delta L}[/tex]
[tex]\Delta L''= \frac{L'' \Delta L }{L}[/tex]
[tex]\Delta L''= \frac{6 \ m * 1.2 \ mm }{3 \ m}[/tex]
[tex]\Delta L''=2.4 \ mm[/tex]
Thus, the same material under the same tension stretches 2.4 mm
Answer:
2.4 mm
Explanation:
Given that
Length of the wire, L = 3 m
Extensión of the wire, ΔL = 1.2 mm = 1.2*10^-3 m
Tensión of wire, T = 200 N
We use the formula
Y = TL/ΔLA
Since both wires material is same that makes the value of young's modulus the same in both the cases
hence equating
[200 * 3 / 1.2*10^-3 * A] = [200 * 6 / ΔL * A]
ΔL = 2.4*10^-3 m = 2.4 mm