Respuesta :

[tex]\huge{ \boxed{ \tt{Solution :-}}}[/tex]

Given :

  • [tex] \sf{f(x) = \dfrac{ x^2 - 4x }{20}}[/tex]

To Find :

  • [tex] \sf{What\: is\: the\: value \:of \: f(6)?}[/tex]

Now we solving it :

[tex] \sf { : \implies{f(x) = \dfrac{ x^2 - 4x }{20}}} \\ \\ \sf { : \implies{f(6) = \dfrac{ 6^2 - 4 \times 6}{20}}} \\ \\ \sf { : \implies{f(6) = \dfrac{ 36 - 24}{20}}} \\ \\ \sf { : \implies{f(6) = \dfrac{ 12}{20}}} \\ \\ :\implies{\boxed {\tt{f(6) = \dfrac{ 3}{5}}}}[/tex]

[tex]\bf {\therefore{The\:value\:of\:f (6)\:is\:\dfrac{ 3}{5}.}}[/tex]

[tex]\rule {307}{2}[/tex]