3. A certain wire, 3 m long, stretches by 1.2 mm when under tension of 200 N. By how much does
an equally thick wire 6 m long, made of the same material and under the same tension, stretch?

Respuesta :

Answer:

The extension of the second wire is   [tex]e_2 = 0.0024 \ m = 2.4 mm[/tex]

Explanation:

From the question we are told that

    The length of the wire is [tex]L = 3 \ m[/tex]

     The elongation of the wire is  [tex]e = 1.2mm = \frac{1.2}{1000} = 0.0012 m[/tex]

        The tension is [tex]F = 200 \ N[/tex]

       The length of the second wire is  [tex]L_2 = 6 \ m[/tex]

     

Generally the Young's modulus(Y) of this material is  

        [tex]Y = \frac{stress}{strain }[/tex]

Where [tex]stress = \frac{F}{A}[/tex]

    Where A is the area which is evaluated as  

           [tex]A = \pi r^2[/tex]

  and   [tex]strain = \frac{extention}{length} = \frac{e}{L}[/tex]

   So

        [tex]Y = \frac{\frac{F}{\pi r^2 } }{ \frac{e}{L} }[/tex]

Since the wire are of the same material Young's modulus(Y)  is constant

So we have  

              [tex]\frac{F * L }{r^2 e} = \pi * Y = constant[/tex]

              [tex]F * L = constant * r^2 e[/tex]

Now the ration between the first and the second wire is

         [tex]\frac{F_1}{F_2} * \frac{L_1}{L_2} = \frac{r*2_1}{r^2} * \frac{e_1}{e_2}[/tex]

Since tension , radius are constant

   We have

           [tex]\frac{L_1}{L_2} = \frac{e_1}{e_2}[/tex]

substituting values

          [tex]\frac{3}{6} = \frac{0.0012}{e_2}[/tex]

          [tex]0.5 e_2 = 0.0012[/tex]

         [tex]e_2 = \frac{ 0.0012 }{0.5}[/tex]

          [tex]e_2 = 0.0024 \ m = 2.4 mm[/tex]