Answer:
1.76 × 10³ K
Explanation:
Given data
For an ideal gas, we can calculate the temperature of the sample using the ideal gas equation.
[tex]P \times V = n \times R \times T\\T = \frac{P \times V}{n \times R} = \frac{5.36atm \times 97.77L}{3.63mol \times \frac{0.0821atm.L}{mol.K} } = 1.76 \times 10^{3} K[/tex]
The sample is at 1.76 × 10³ K.