A company is considering investing in a project that costs $300,000. The company uses straight-line depreciation and estimates that the project has a useful life of 10 years with no salvage value. This project is expected to produce NET INCOME of $42,000 each year. Assuming a minimum rate of return of 10%, indicate the NET PRESENT VALUE of this project.

a. $41,928
b. $258,072
c. $120,000
d. $142,409

Respuesta :

Answer:

NPV = $-41,928.18

Explanation:

Net present value is the present value of after tax cash flows from an investment less the amount invested.

NPV can be calculated using a financial calculator:

Cash flow in year 0 = $-300,000

Cash flow each year from year 1 to 10 = $42,000

I = 10%

NPV = $-41,928.18

To find the NPV using a financial calacutor:

1. Input the cash flow values by pressing the CF button. After inputting the value, press enter and the arrow facing a downward direction.

2. After inputting all the cash flows, press the NPV button, input the value for I, press enter and the arrow facing a downward direction.

3. Press compute

I hope my answer helps you

Answer:

b. $258,072

Explanation:

PERIOD              CASH FLOW                   NET PRESENT VALUE

Year 1                       $42,000                         [tex]\frac{42000}{(1 + 0.10)^{1}} = 38181.82[/tex]

Year 2                      $42,000                         [tex]\frac{42000}{(1 + 0.10)^{2}} = 34710.74[/tex]

Year 3                      $42,000                         [tex]\frac{42000}{(1 + 0.10)^{3}} = 31555.22[/tex]

Year 4                      $42,000                         [tex]\frac{42000}{(1 + 0.10)^{4}} = 28686.57[/tex]

Year 5                      $42,000                         [tex]\frac{42000}{(1 + 0.10)^{5}} = 26078.70[/tex]

Year 6                      $42,000                         [tex]\frac{42000}{(1 + 0.10)^{6}} = 23707.91[/tex]

Year 7                      $42,000                         [tex]\frac{42000}{(1 + 0.10)^{7}} = 21552.64[/tex]

Year 8                      $42,000                         [tex]\frac{42000}{(1 + 0.10)^{8}} = 19593.31[/tex]

Year 9                      $42,000                         [tex]\frac{42000}{(1 + 0.10)^{9}} = 17812.10[/tex]

Year 10                     $42,000                        [tex]\frac{42000}{(1 + 0.10)^{10}} = 16192.82[/tex]

Total                                                                          $258,071.83