Respuesta :

Answer:

The values of x are 2.41 and -0.41

Step-by-step explanation:

The given quadratic equation is [tex]x^2-2x-1=0[/tex]

It is required to find the value of x form which the above equation is true. It means we need to solve the above equation for x. The solution of a quadratic equation [tex]ax^2+bx+c=0[/tex] are :

[tex]x=\dfrac{-b\pm \sqrt{b^2-4ac} }{2a}[/tex]

We have, a = 1, b = -2 and c = 1

Thus, plugging all values in formula, we get :

[tex]x=\dfrac{-b+ \sqrt{b^2-4ac} }{2a},\dfrac{-b- \sqrt{b^2-4ac} }{2a}\\\\x=\dfrac{-(-2)+ \sqrt{(-2)^2-4(1)(-1)} }{2(1)},\dfrac{-(-2)- \sqrt{(-2)^2-4(1)(-1)} }{2(1)}\\\\x=2.41, -0.41[/tex]

The values of x are 2.41 and -0.41