Respuesta :
Answer:
the answer is μ=5.28 and σ=1.67
Step-by-step explanation:
[tex]E(W) =0\times0.05+1\times0.06+2\times0.18+3\times0.35+4\times0.3+5\times0.05+6\times0.01\\=0.06+0.36+1.05+1.2+0.25+0.06\\=2.98[/tex]
[tex]E(W^2)=10.34\\\rightarrow Var(W) = E(W^2)-E^2(W)\\=1.4596[/tex]
[tex]E(G) = 2.3\\Var(G)=E(G^2)-E^2(G)\\=6.62-5.29\\=1.33[/tex]
So,
[tex]\mu = E(W+G)=E(W)+E(G)=5.28[/tex]
[tex]\sigma ^2 = Var (W+G) \\=Var(W)+Var(G)=2.79\\\sigma =1.67[/tex]
Therefore, the answer is μ=5.28 and σ=1.67
Using the discrete distributions, it is found that the mean and standard deviation are given by:
C) μ=5.28 and σ=1.67
- The mean of a discrete distribution is given by the sum of all outcomes multiplied by it's respective probability.
- The variance is given by the sum of the differences squared between each outcome and the mean, multiplied by their respective probabilities.
- When two variables are added, the mean is the sum of the means, while the standard deviation is the square root of the sum of the variances.
For Worms:
[tex]E_w(X) = 0.05(0) + 0.06(1) + 0.18(2) + 0.35(3) + 0.3(4) + 0.05(5) + 0.01(6) = 2.98[/tex]
[tex]Var_w(X) = 0.05(0 - 2.98)^2 + 0.06(1 - 2.98)^2 + 0.18(2 - 2.98)^2 + 0.35(3 - 2.98)^2 + 0.3(4 - 2.98)^2 + 0.05(5 - 2.98)^2 + 0.01(6 - 2.98)^2 = 1.4596[/tex]
For grubs:
[tex]E_g(x) = 0.05(0) + 0.21(1) + 0.27(2) + 0.38(3) + 0.05(4) + 0.03(5) + 0.01(6) = 2.3[/tex]
[tex]Var_g(x) = 0.05(0 - 2.3)^2 + 0.21(1 - 2.3)^2 + 0.27(2 - 2.3)^2 + 0.38(3 - 2.3)^2 + 0.05(4 - 2.3)^2 + 0.03(5 - 2.3)^2 + 0.01(6 - 2.3)^2 = 1.33[/tex]
For the sum:
[tex]E(X) = E_w(X) + E_g(x) = 2.98 + 2.3 = 5.28[/tex]
[tex]\sigma = \sqrt{Var_w(X) + Var_g(x)} = \sqrt{1.4596 + 1.33} = 1.67[/tex]
Hence option c is correct.
A similar problem is given at https://brainly.com/question/15855314