We have been given that the rectangle has a length of [tex]4x+3[/tex] and width of [tex]3x[/tex]. We are asked to find the area and perimeter of the rectangle, when [tex]x=8[/tex].
We know that perimeter of rectangle is 2 times sum of length and width.
[tex]\text{Perimeter}=2\times (\text{Length}+\text{Width})[/tex]
[tex]\text{Perimeter}=2\times (4x+3+3x)[/tex]
[tex]\text{Perimeter}=2\times (7x+3)[/tex]
[tex]\text{Perimeter}=2\times (7(8)+3)[/tex]
[tex]\text{Perimeter}=2\times (56+3)[/tex]
[tex]\text{Perimeter}=2\times (59)[/tex]
[tex]\text{Perimeter}=118[/tex]
Therefore, the perimeter of the rectangle is 118 units.
We know that area of rectangle is width times length.
[tex]\text{Area}=\text{Length}\times \text{Width}[/tex]
[tex]\text{Area}=(4x+3)\times 3x[/tex]
[tex]\text{Area}=12x^2+9x[/tex]
[tex]\text{Area}=12(8)^2+9(8)[/tex]
[tex]\text{Area}=12(64)+72[/tex]
[tex]\text{Area}=768+72[/tex]
[tex]\text{Area}=840[/tex]
Therefore, the area of the rectangle is 840 square units.