We have been given that Lori runs 3 miles in 30 minutes.
First of all, we will find rate at which Lori runs per minute as:
[tex]\text{Speed}=\frac{\text{Distance}}{\text{Time}}[/tex]
[tex]\text{Lori's speed}=\frac{\text{3 miles}}{\text{30 min}}[/tex]
[tex]\text{Lori's speed}=\frac{\text{0.1 miles}}{\text{ min}}[/tex]
We know that 1 minute equal 60 minutes. Let us convert speed into miles per hour as:
[tex]\text{Lori's speed}=\frac{\text{0.1 miles}}{\text{ min}}\times \frac{\text{60 min}}{\text{1 hour}}[/tex]
[tex]\text{Lori's speed}=\frac{\text{6 miles}}{\text{hour}}[/tex]
Therefore, Lori runs 6 miles per hour.
We have been given that Alexis runs 2 kilometers in 15 minutes.
We will find rate at which Alexis runs per minute as:
[tex]\text{Alexis's speed}=\frac{\text{2 km}}{\text{15 min}}[/tex]
[tex]\text{Alexis's speed}=\frac{\text{2 km}}{\text{15 min}}\times \frac{\text{60 min}}{\text{1 hour}}[/tex]
[tex]\text{Alexis's speed}=\frac{\text{2 km}}{1}\times \frac{4}{\text{1 hour}}[/tex]
[tex]\text{Alexis's speed}=\frac{\text{8 km}}{\text{1 hour}}[/tex]
1 km = 0.621371 miles.
8 km = [tex]8\cdot 0.621371=4.970968\approx 5[/tex] miles.
Therefore, Alexis runs 5 miles per hour.
Since Lori' speed is greater than Alexis's, therefore, Lori ran the fastest.