When radioactive tracers are used for medical scans, the tracers both decay in the body via radiation, as well as being excreted from the body. The effective half-life of the radioactive tracer is due to the combination of both effects. Medical experiments show that a stable (nonradioactive) isotope of a particular element have an excretion half-life of 6 days. A radioactive isotope of the same element has a half-life of 9 days. What is the effective half-life of the radioactive tracer due to both effects?

Respuesta :

Answer:

Effective half-time of the tracer is 3.6 days

Explanation:

The formula for calculating the decay due to excretion for the first process is ;

[tex]\frac{dN_1}{dt } = - \lambda _e N_o[/tex]

here ;

[tex]N_o[/tex] = initial number of tracers

Then to the second process ; we have :

[tex]\frac{dN_2}{dt } = - \lambda _e N_o[/tex]

The total decay is as a result of the overall process occurring ; we have :

[tex]\frac{dN_{total}}{dt } = \frac{dN_1}{dt} + \frac{dN_2}{dt}[/tex]   ------ (1)

here ;

[tex]\frac{dN_{total}}{dt } = \lambda _{total} N_o[/tex]

Putting the values in (1);we have :

[tex]- \lambda _{Total} N_o = - \lambda_e N_o + ( -\lambda r N_o})[/tex]

[tex]\lambda _{Total} = \lambda_e + \lambda r[/tex]

As we also know that:

[tex]\frac{1}{t_{1/2}} = \frac{[t_{1/2}]_{radiation}+[t_{1/2}]_{excretion}}{[t_{1/2}]_{radiation}*[t_{1/2}]_{excretion}}[/tex]

[tex]\frac{1}{t_{1/2}}_{effective}} = \frac{[t_{1/2}]_{radiation}+[t_{1/2}]_{excretion}}{[t_{1/2}]_{radiation}*[t_{1/2}]_{excretion}}[/tex]

[tex]\frac{1}{t_{1/2}}_{effective}} = \frac{9+6}{9*6}[/tex]

[tex]\frac{1}{t_{1/2}_{effective}}}=\frac{15}{54}[/tex]

[tex]t_{1/2}_{effective}} = \frac{54}{15}[/tex]

= 3.6 days

Answer:

The effective half-life is  [tex](t_{\frac{1}{2} })_T = 8.6 \ days[/tex]

Explanation:

From the question we are told that

   The excretion half-life is  [tex]t__{\frac{1}{2} } excretion} = 6 \ days[/tex]

    The  radiation half-life is  [tex]t__{\frac{1}{2} } radiation} = 9 \ days[/tex]

The decay due to excretion is mathematically represented as

          [tex]\frac{dN_a}{dt} = \lambda_e N_i[/tex]

Where [tex]Ni[/tex] is the original number of tracers

    The decay due to excretion is mathematically represented as

          [tex]\frac{dN_b}{dt} = \lambda_r N_i[/tex]

Now from the question we are total decay is as result of the combined decay of both processes

  We have that

            [tex]\frac{dN_T}{dt} =\lambda_T N_i= \frac{dN_a}{dt} + \frac{dN_b}{dt}[/tex]

Substituting for the formula above

           [tex]\lambda_T = \lambda _e + \lambda_r[/tex]

Generally the formula for half-life is

          [tex]t__{\frac{1}{2} }}= \frac{0.693}{\lambda }[/tex]

So     [tex]\lambda = \frac{0.693}{t_{\frac{1}{2} }}[/tex]

Substituting this into the above equation

         [tex][\frac{0.693}{t_\frac{1}{2} } ]_T =[\frac{0.693}{t_\frac{1}{2} } ]_e + [\frac{0.693}{t_\frac{1}{2} } ]_r[/tex]

         [tex][\frac{1}{t_\frac{1}{2} } ]_T =\frac{[\frac{1}{t_\frac{1}{2} } ]_e + [\frac{1}{t_\frac{1}{2} } ]_r}{[\frac{1}{t_\frac{1}{2} } ]_e * [\frac{1}{t_\frac{1}{2} } ]_r}[/tex]

Substituting values

       [tex][\frac{1}{t_\frac{1}{2} } ]_T =\frac{ 9+6}{9 * 6}[/tex]

     [tex][\frac{1}{t_\frac{1}{2} } ]_T =\frac{ 15}{54}[/tex]

     [tex](t_{\frac{1}{2} })_T =\frac{ 54 }{15}[/tex]

     [tex](t_{\frac{1}{2} })_T = 8.6 \ days[/tex]