contestada

Point M with coordinates (3,4) is the midpoint of the line AB and A has the point (-1,6). What is the
point of B?

Respuesta :

ley00

Answer:

(7, 2)

Step-by-step explanation:

(-1+x)/2 = 3

x= 7

(6+y)/2 = 4

y= 2

The midpoint of a line segment divides the line segment into equal halves. The point of B is (7,2)

Given that:

[tex]A = (-1,6)[/tex]

[tex]M = (3,4)[/tex]

Point B is represented as:

[tex]B = (x_2,y_2)[/tex]

To calculate the coordinate of B, we use the following midpoint formula:

[tex]M = (\frac{x_1 + x_2}{2},\frac{y_1 + y_2}{2})[/tex]

So, we have:

[tex](3,4) = (\frac{-1 + x_2}{2},\frac{6 + y_2}{2})[/tex]

Multiply through by 2

[tex]2 \times (3,4) = (-1 + x_2,6 + y_2)[/tex]

[tex](6,8) = (-1 + x_2,6 + y_2)[/tex]

By comparison:

[tex]6 = -1 +x_2[/tex]  and

[tex]8 = 6 + y_2[/tex]

So, we have:

[tex]6 = -1 +x_2[/tex]

[tex]x_2 =6 + 1[/tex]

[tex]x_2 =7[/tex]

[tex]8 = 6 + y_2[/tex]

[tex]y_2 = 8 - 6[/tex]

[tex]y_2 = 2[/tex]

Hence, the coordinate of B is (7,2)

Read more about midpoints at:

https://brainly.com/question/2441957