The American Heart Association is about to conduct an anti-smoking campaign and wants to know the fraction of Americans over 47 who smoke.

Step 1 of 2: Suppose a sample of 861 Americans over 47 is drawn. Of these people, 577 don't smoke. Using the data, estimate the proportion of Americans over 47 who smoke. Enter your answer as a fraction or a decimal number rounded to three decimal places.

Step 2 of 2: Suppose a sample of 861 Americans over 47 is drawn. Of these people, 577 don't smoke. Using the data, construct the 80% confidence interval for the population proportion of Americans over 47 who smoke. Round your answers to three decimal places.

Respuesta :

Answer:

80% confidence interval for the population proportion of Americans over 47 who smoke is [0.308 , 0.349].

Step-by-step explanation:

We are given that a sample of 861 Americans over 47 is drawn. Of these people, 577 don't smoke.

Let [tex]\hat p[/tex] = sample proportion of Americans who smoke =  [tex]1 - \frac{577}{861}[/tex] = 0.329

Firstly, the pivotal quantity for 80% confidence interval for the population proportion is given by;

                              P.Q. =  [tex]\frac{\hat p-p}{\sqrt{\frac{\hat p(1-\hat p)}{n} } }[/tex]  ~ N(0,1)

where, [tex]\hat p[/tex] = sample proportion of Americans who smoke = 0.329

           n = sample of Americans = 861

           p = population proportion of Americans over 47 who smoke

Here for constructing 80% confidence interval we have used One-sample z proportion statistics.

So, 80% confidence interval for the population proportion, p is ;

P(-1.282 < N(0,1) < 1.282) = 0.80  {As the critical value of z at 10% level

                                                     of significance are -1.282 & 1.282}  

P(-1.282 < [tex]\frac{\hat p-p}{\sqrt{\frac{\hat p(1-\hat p)}{n} } }[/tex] < 1.282) = 0.80

P( [tex]-1.282 \times {\sqrt{\frac{\hat p(1-\hat p)}{n} } }[/tex] < [tex]{\hat p-p}[/tex] < [tex]1.282 \times {\sqrt{\frac{\hat p(1-\hat p)}{n} } }[/tex] ) = 0.80

P( [tex]\hat p-1.282 \times {\sqrt{\frac{\hat p(1-\hat p)}{n} } }[/tex] < p < [tex]\hat p+1.282 \times {\sqrt{\frac{\hat p(1-\hat p)}{n} } }[/tex] ) = 0.80

80% confidence interval for p = [[tex]\hat p-1.282 \times {\sqrt{\frac{\hat p(1-\hat p)}{n} } }[/tex],[tex]\hat p+1.282 \times {\sqrt{\frac{\hat p(1-\hat p)}{n} } }[/tex]]

= [ [tex]0.329-1.282 \times {\sqrt{\frac{0.329(1-0.329)}{861} } }[/tex] , [tex]0.329+1.282 \times {\sqrt{\frac{0.329(1-0.329)}{861} } }[/tex] ]

 = [0.308 , 0.349]

Therefore, 80% confidence interval for the population proportion of Americans over 47 who smoke is [0.308 , 0.349].