Answer:
2.8 × 10² g
Explanation:
Given data
Step 1: Convert 25°C to the absolute scale
When working with gases, we have to convert the temperatures to the Kelvin scale, using the following expression.
K = °C + 273.15 = 25°C + 273.15 = 298 K
Step 2: Calculate the moles of chlorine gas
We will use the ideal gas equation.
[tex]P \times V = n \times R \times T\\n = \frac{P \times V}{R \times T} = \frac{9.7atm \times 10.0L}{\frac{0.0821atm.L}{mol.K} \times 298K} = 4.0 mol[/tex]
Step 3: Calculate the mass of chlorine gas
The molar mass of Cl₂ is 70.91 g/mol. Then,
[tex]4.0mol \times \frac{70.91g}{mol} = 2.8 \times 10^{2} g[/tex]