Respuesta :

Answer:

2.8 × 10² g

Explanation:

Given data

  • Volume (V): 10.0 L
  • Pressure (P): 9.7 atm
  • Temperature (T): 25°C

Step 1: Convert 25°C to the absolute scale

When working with gases, we have to convert the temperatures to the Kelvin scale, using the following expression.

K = °C + 273.15 = 25°C + 273.15 = 298 K

Step 2: Calculate the moles of chlorine gas

We will use the ideal gas equation.

[tex]P \times V = n \times R \times T\\n = \frac{P \times V}{R \times T} = \frac{9.7atm \times 10.0L}{\frac{0.0821atm.L}{mol.K} \times 298K} = 4.0 mol[/tex]

Step 3: Calculate the mass of chlorine gas

The molar mass of Cl₂ is 70.91 g/mol. Then,

[tex]4.0mol \times \frac{70.91g}{mol} = 2.8 \times 10^{2} g[/tex]