Respuesta :
Answer:
107.1° C
Explanation:
The properties of air from table '' properties of air at 1 atm pressure'' recorded at temperature T = 50°C
Thermal conductivity k = 0.02735 W/m.K
Kinematic viscosity v = 1.798 × 10⁻⁵ m²/s
Prandtl number Pr = 0.7228
Determine the characteristics length , L
[tex]L = x + E[/tex]
where;
x represent the length of the chip
E represent the unheated stating length
Replacing 15 mm for x and 15 mm for E
L = 15 + 15
L = 30 mm
To calculate the Reynolds number for the flow at the trailing edge (x = L + E)
[tex]Re = \frac{VL}{v}[/tex]
Here; [tex]Re_x[/tex] is the Reynolds number and L is the characteristics length
Replacing 23.4 m/s for V , 30 mm for L and 1.798 × 10⁻⁵ m²/s for v
Re = [tex]\frac{23.4((15*10^{-3})+(15*10^{-3})}{1.798*10^{-5}}[/tex]
Re = 20355.95106
Thus, since the obtained Reynolds number is less than [tex]5*10^5[/tex] i.e Re <
To Calculate the local Nusselt number [tex]NU_{x_{( \sum = 0) }}[/tex] for the laminar flow with uniform heat flux ; we have :
[tex]NU_{x_{( \sum = 0) }} = 0.453 Re^{0.5}Pr^{1/3}[/tex]
Replacing 20355.95106 for Re and 0.7228 for Pr; we get:
[tex]NU_{x_{( \sum = 0) }} = 0.453(20355.95106) ^{0.5}(0.7228)^{1/3}[/tex]
[tex]NU_{x_{( \sum = 0) }} =58.0[/tex]
Calculate the Nusselt number for the silicon chip whose edges are flush in substrate
[tex]Nu_x = \frac{NU_{x_{( \sum = 0) }}}{[1-( E/L)^{3/4}]^{1/3}}[/tex]
Replacing [tex]NU_{x_{( \sum = 0) }} =58.0[/tex] , 30 mm for L and 15 mm for E
[tex]Nu_x = \frac{58.0}{[1-( 15*10^{-3}/0.03)^{3/4}]^{1/3}}[/tex]
[tex]Nu_x[/tex] = 78.37
To the determination of the local heat coefficient
[tex]Nu_x = \frac{h_xL}{k}[/tex]
making [tex]h_x[/tex] the subject of the formula
[tex]h_x = \frac{Nu_x*k}{L}[/tex]
[tex]h_x = \frac{78.37*0.02735}{0.03}[/tex]
= 71.44 W/m² . K
Considering Newton's Law of cooling and calculating for the surface temperature; we have:
[tex]Q = h_xA_s (T_s - T \infty) \\ \\ Q = h_x *x^2 (T_s - T \infty)[/tex]
making [tex]T_s[/tex] the subject of the formula
[tex]T-s = T_ \infty + \frac{Q}{h_xx^2}[/tex]
where Q = heat transfer = 1.4 W
[tex]T_ \infty[/tex] = ambient temperature 20° C
[tex]T_s = 20 + \frac{1.4}{71.44*(15*10^{-3})^2}[/tex]
= 107.1° C
Thus, the surface temperature at the trailing edge of the chip is = 107.1° C