Answer:
a) [tex]a_{1}=3.7 m/s^{2}[/tex]
b) [tex]a_{2}=3.68 m/s^{2}[/tex]
Explanation:
a) The displacement of the first object is 22.5 m, so we can use the next equation:
[tex]v_{f}^{2}=v_{i}^{2}+2a\Delta x[/tex]
[tex]a=\frac{v_{f}^{2}-v_{i}^{2}}{2x}[/tex]
[tex]a=\frac{14.9^{2}-(-7.45)^{2}}{2*22.5}[/tex]
[tex]a_{1}=3.7 m/s^{2}[/tex]
positive acceleration.
b) Using the same equation we can find the second value of the acceleration:
[tex]a=\frac{v_{f}^{2}-v_{i}^{2}}{2x}[/tex]
[tex]a=\frac{14.9^{2}-(-7.45)^{2}}{2*22.6}[/tex]
[tex]a_{2}=3.68 m/s^{2}[/tex]
positive acceleration.
I hope it helps you!