Respuesta :

We have been given two expressions [tex]9P9\text{ and }9C9[/tex]. We are asked to find the value of each.

To find 9P9, we will use permutations formula.

[tex]^nP_r=\frac{n!}{(n-r)!}[/tex], where

P = Number of permutations,

n = The total number of objects in the set,

r = Number of objects being chosen from the set.

[tex]9P9=\frac{9!}{(9-9)!}[/tex]

[tex]9P9=\frac{9\cdot 8\cdot 7\cdot 6\cdot 5\cdot 4\cdot 3\cdot 2\cdot 1}{(0)!}[/tex]

[tex]9P9=\frac{362880}{1}[/tex]                   Using [tex]0!=1[/tex]

[tex]9P9=362880[/tex]

To find 9C9, we will use combinations formula.

[tex]^nC_r=\frac{n!}{r!(n-r)!}[/tex], where

C = Number of combinations,

n = The total number of objects in the set,

r = Number of objects being chosen from the set.

[tex]9C9=\frac{9!}{9!(9-9)!}[/tex]

[tex]9C9=\frac{9!}{9!(0)!}[/tex]

[tex]9C9=\frac{9!}{9!\cdot 1}[/tex]     Using [tex]0!=1[/tex]

Cancelling out [tex]9![/tex], we will get:

[tex]9C9=\frac{1}{1}[/tex]

[tex]9C9=1[/tex]

The answers differ because order. With permutations we care about the order of the elements, while with combinations we don't.