Answer:
Check the explanation
Step-by-step explanation:
a.
point estimate of the proportion who like = 60/100 = 0.60
b)
Confidence Interval For Proportion
CI = p ± Z a/2 Sqrt(p*(1-p)/n)))
x = Mean
n = Sample Size
a = 1 - (Confidence Level/100)
Za/2 = Z-table value
CI = Confidence Interval
Mean(x)=60
Sample Size(n)=100
Sample proportion = x/n =0.6
Confidence Interval = [ 0.6 ±Z a/2 ( Sqrt ( 0.6*0.4) /100)]
= [ 0.6 - 1.96* Sqrt(0.0024) , 0.6 + 1.96* Sqrt(0.0024) ]
= [ 0.504,0.696]
c)
Margin of Error = Z a/2 Sqrt(p*(1-p)/n))
x = Mean
n = Sample Size
a = 1 - (Confidence Level/100)
Za/2 = Z-table value
CI = Confidence Interval
Margin of Error = Z a/2 * ( Sqrt ( (0.6*0.4) /100) )
= 1.96* Sqrt(0.0024)
=0.096
d)
Compute Sample Size ( n ) = n=(Z/E)^2*p*(1-p)
Z a/2 at 0.05 is = 1.96
Sample Proportion = 0.06
ME = 0.09
n = ( 1.96 / 0.09 )^2 * 0.06*0.94
= 26.7489 ~ 27