A simple random sample of size n is drawn from a population that is normally distributed. The sample​ mean, x overbar​, is found to be 113​, and the sample standard​ deviation, s, is found to be 10. ​(a) Construct an 80​% confidence interval about mu if the sample​ size, n, is 13. ​(b) Construct an 80​% confidence interval about mu if the sample​ size, n, is 18. ​(c) Construct a 98​% confidence interval about mu if the sample​ size, n, is 13. ​(d) Could we have computed the confidence intervals in parts​ (a)-(c) if the population had not been normally​ distributed?

Respuesta :

Answer:

(a) 80% confidence interval for the population mean is [109.24 , 116.76].

(b) 80% confidence interval for the population mean is [109.86 , 116.14].

(c) 98% confidence interval for the population mean is [105.56 , 120.44].

(d) No, we could not have computed the confidence intervals in parts​ (a)-(c) if the population had not been normally​ distributed.

Step-by-step explanation:

We are given that a simple random sample of size n is drawn from a population that is normally distributed.

The sample​ mean is found to be 113​ and the sample standard​ deviation is found to be 10.

(a) The sample size given is n = 13.

Firstly, the pivotal quantity for 80% confidence interval for the population mean is given by;

                               P.Q. =  [tex]\frac{\bar X-\mu}{\frac{s}{\sqrt{n} } }[/tex]  ~ [tex]t_n_-_1[/tex]

where, [tex]\bar X[/tex] = sample mean = 113

             s = sample standard​ deviation = 10

             n = sample size = 13

             [tex]\mu[/tex] = population mean

Here for constructing 80% confidence interval we have used One-sample t test statistics as we don't know about population standard deviation.

So, 80% confidence interval for the population mean, [tex]\mu[/tex] is ;

P(-1.356 < [tex]t_1_2[/tex] < 1.356) = 0.80  {As the critical value of t at 12 degree

                                          of freedom are -1.356 & 1.356 with P = 10%}  

P(-1.356 < [tex]\frac{\bar X-\mu}{\frac{s}{\sqrt{n} } }[/tex] < 1.356) = 0.80

P( [tex]-1.356 \times }{\frac{s}{\sqrt{n} } }[/tex] < [tex]{\bar X-\mu}[/tex] < [tex]1.356 \times }{\frac{s}{\sqrt{n} } }[/tex] ) = 0.80

P( [tex]\bar X-1.356 \times }{\frac{s}{\sqrt{n} } }[/tex] < [tex]\mu[/tex] < [tex]\bar X+1.356 \times }{\frac{s}{\sqrt{n} } }[/tex] ) = 0.80

80% confidence interval for [tex]\mu[/tex] = [ [tex]\bar X-1.356 \times }{\frac{s}{\sqrt{n} } }[/tex] , [tex]\bar X+1.356 \times }{\frac{s}{\sqrt{n} } }[/tex]]

                                           = [ [tex]113-1.356 \times }{\frac{10}{\sqrt{13} } }[/tex] , [tex]113+1.356 \times }{\frac{10}{\sqrt{13} } }[/tex] ]

                                           = [109.24 , 116.76]

Therefore, 80% confidence interval for the population mean is [109.24 , 116.76].

(b) Now, the sample size has been changed to 18, i.e; n = 18.

So, the critical values of t at 17 degree of freedom would now be -1.333 & 1.333 with P = 10%.

80% confidence interval for [tex]\mu[/tex] = [ [tex]\bar X-1.333 \times }{\frac{s}{\sqrt{n} } }[/tex] , [tex]\bar X+1.333 \times }{\frac{s}{\sqrt{n} } }[/tex]]

                                              = [ [tex]113-1.333 \times }{\frac{10}{\sqrt{18} } }[/tex] , [tex]113+1.333 \times }{\frac{10}{\sqrt{18} } }[/tex] ]

                                               = [109.86 , 116.14]

Therefore, 80% confidence interval for the population mean is [109.86 , 116.14].

(c) Now, we have to construct 98% confidence interval with sample size, n = 13.

So, the critical values of t at 12 degree of freedom would now be -2.681 & 2.681 with P = 1%.

98% confidence interval for [tex]\mu[/tex] = [ [tex]\bar X-2.681 \times }{\frac{s}{\sqrt{n} } }[/tex] , [tex]\bar X+2.681 \times }{\frac{s}{\sqrt{n} } }[/tex]]

                                              = [ [tex]113-2.681 \times }{\frac{10}{\sqrt{13} } }[/tex] , [tex]113+2.681 \times }{\frac{10}{\sqrt{13} } }[/tex] ]

                                               = [105.56 , 120.44]

Therefore, 98% confidence interval for the population mean is [105.56 , 120.44].

(d) No, we could not have computed the confidence intervals in parts​ (a)-(c) if the population had not been normally​ distributed because t test statistics is used only when the data follows normal distribution.