Respuesta :
The values of the variables are [tex]a = 6[/tex], [tex]b = 2[/tex], [tex]c = 6[/tex], [tex]d = 2[/tex], [tex]e = 6[/tex]. [tex]f = 6[/tex] and [tex]g = 1[/tex]
What are rational expressions?
Rational expressions are quotients of two algebraic expressions
The expression is given as:
[tex]\frac{2}{x^2 - 36} - \frac{1}{x^2 +6x} = \frac{2}{(x+6)(x-6)} - \frac{1}{x(x + a)}[/tex]
Factor out x in the expression
[tex]\frac{2}{x^2 - 36} - \frac{1}{x(x +6)} = \frac{2}{(x+6)(x-6)} - \frac{1}{x(x + a)}[/tex]
By comparison, we have:
[tex]x(x + 6) = x(x + a)[/tex]
This gives
[tex]a = 6[/tex]
Also, we have:
[tex]\frac{2}{x^2 - 36} - \frac{1}{x(x +6)} = \frac{bx}{(x+6)(x-6)x} - \frac{x-c}{(x+6)(x-6)x}[/tex]
Express x^2 - 36 as a difference of two squares
[tex]\frac{2}{(x + 6)(x - 6)} - \frac{1}{x(x +6)} = \frac{bx}{(x+6)(x-6)x} - \frac{x-c}{(x+6)(x-6)x}[/tex]
Rewrite as:
[tex]\frac{2x}{(x + 6)(x - 6)x} - \frac{x-6}{(x + 6)(x - 6)x} = \frac{bx}{(x+6)(x-6)x} - \frac{x-c}{(x+6)(x-6)x}[/tex]
By comparison
[tex]bx = 2x[/tex] and [tex]x - c = x - 6[/tex]
So, we have:
[tex]b = 2[/tex]
[tex]c = 6[/tex]
Also, we have:
[tex]\frac{2x}{(x + 6)(x - 6)x} - \frac{x-6}{(x + 6)(x - 6)x} = \frac{dx - x + e}{(x+6)(x-6)x}[/tex]
Take the LCM
[tex]\frac{2x - x + 6}{(x + 6)(x - 6)x} = \frac{dx - x + e}{(x+6)(x-6)x}[/tex]
By comparison, we have:
[tex]d = 2[/tex]
[tex]e = 6[/tex]
Solving further, we have:
[tex]\frac{2x - x + 6}{(x + 6)(x - 6)x} = \frac{x + f}{(x+6)(x-6)x}[/tex]
This gives
[tex]\frac{x + 6}{(x + 6)(x - 6)x} = \frac{x + f}{(x+6)(x-6)x}[/tex]
By comparison, we have:
[tex]f = 6[/tex]
Lastly, we have:
[tex]\frac{x + 6}{(x + 6)(x - 6)x} = \frac{g}{(x-6)x}[/tex]
This gives
[tex]\frac{1}{(x - 6)x} = \frac{g}{(x-6)x}[/tex]
By comparison,
[tex]g = 1[/tex]
Hence, the values of the variables are [tex]a = 6[/tex], [tex]b = 2[/tex], [tex]c = 6[/tex], [tex]d = 2[/tex], [tex]e = 6[/tex]. [tex]f = 6[/tex] and [tex]g = 1[/tex]
Read more about expressions at:
https://brainly.com/question/8047980