A triangle has sides measuring 8 inches and 12 inches.If x represent the length in inches of the third side, which inequality gives the range of possible values for x

Respuesta :

caylus
Hello,

Each side of a triangle is less than the sum of the 2 others sides;

x<8+12 ==>x<20
8<x+12 already realized
12<x+8==>x>4
So:

4<x<20 (i suppose that all the vertex are not on the same line)

Answer:

The range of possible values for x is:

4<x<20

Step-by-step explanation:

For a,b and c to be the sides of a triangle following inequalities must be satisfied

a<b+c ,    b<a+c  and  c<a+b

Here a=8

b=12

and c=x

8<12+x ,    12<8+x  and x<12+8

i.e.  8-12<x ,  12-8<x  and  x<20

i.e.   -4<x  ,  4<x  and x<20

i.e. 4<x<20

Hence, the range of possible values for x is:

4<x<20