Respuesta :
V = π r^2 h
C = 2 πr = 4.5
r = 4.5/2π . . . . . . . . . .substitute this to the volume
V = π(4.5)^2/π^4 x 15
V = 24.43
hope this helps
C = 2 πr = 4.5
r = 4.5/2π . . . . . . . . . .substitute this to the volume
V = π(4.5)^2/π^4 x 15
V = 24.43
hope this helps
Answer:
[tex]V=24.2\ ft^{3}[/tex]
Step-by-step explanation:
we know that
The volume of a cylinder is equal to
[tex]V=\pi r^{2} h[/tex]
where
r is the radius of the base of the cylinder
h is the height of the cylinder
In this problem we have
[tex]h=15\ ft, C=4.5\ ft[/tex]
Remember that
the circumference of a circle is equal to
[tex]C=2\pi r[/tex]
Solve for r
[tex]r=\frac{C}{2\pi }[/tex]
substitute
[tex]r=\frac{4.5}{2\pi }\ ft[/tex]
Find the volume
[tex]V=\pi (\frac{4.5}{2\pi })^{2} (15)[/tex]
[tex]V=24.2\ ft^{3}[/tex]