Respuesta :

V = π r^2 h



C = 2 πr = 4.5

r = 4.5/2π . . . . . . . . . .substitute this to the volume


V = π(4.5)^2/π^4   x 15
 
V = 24.43

hope this helps
 


Answer:

[tex]V=24.2\ ft^{3}[/tex]

Step-by-step explanation:

we know that

The volume of a cylinder is equal to

[tex]V=\pi r^{2} h[/tex]

where

r is the radius of the base of the cylinder

h is the height of the cylinder

In this problem we have

[tex]h=15\ ft, C=4.5\ ft[/tex]

Remember that

the circumference of a circle is equal to

[tex]C=2\pi r[/tex]

Solve for r

[tex]r=\frac{C}{2\pi }[/tex]

substitute

[tex]r=\frac{4.5}{2\pi }\ ft[/tex]

Find the volume

[tex]V=\pi (\frac{4.5}{2\pi })^{2} (15)[/tex]

[tex]V=24.2\ ft^{3}[/tex]