Respuesta :

2cos^2x = sin2x
As,
sin2x = 2sinxcosx
2cos^2(x) = 2 sinx cosx 
Dividing by 2 on both sides:
cos^2x = sinx cosx 
Taking sinx cosx into left side:
cos^2x - sinx cosx = 0 

cosx (cosx - sinx) = 0 

cosx = 0 ---> x = pi/2  or  cosx - sinx = 0 

cosx = sinx -----> x = pi/4 

so answer is {pi/4 , pi/2}

Answer and Explanation:

Given : Equation [tex]2\cos^2x = \sin2x[/tex]

To find : Solve the given equation ?

Solution :

Equation [tex]2\cos^2x = \sin2x[/tex]

[tex]2\cos^2x-\sin2x=0[/tex]

Open identity, [tex]\sin 2x=2\sin x\cos x[/tex]

[tex]2\cos^2x-2\sin x\cos x=0[/tex]      

[tex]2\cos x(\cos x-\sin x)=0[/tex]

[tex]2\cos x=0,(\cos x-\sin x)=0[/tex]

1) When [tex]2\cos x=0[/tex]

[tex]\cos x=0[/tex]

General solution - [tex]x=\frac{\pi}{2}+n\pi[/tex]

From [tex](0,2\pi)[/tex] the solution is [tex](\frac{\pi}{2},0),(\frac{3\pi}{2},0)[/tex]

2) When [tex](\cos x-\sin x)=0[/tex]

[tex]\cos x=\sin x[/tex]

[tex]1=\frac{\sin x}{\cos x}[/tex]

[tex]\tan x=1[/tex]

General solution - [tex]x=\frac{\pi}{4}+n\pi[/tex]

From [tex](0,2\pi)[/tex] the solution is [tex](\frac{\pi}{4},0),(\frac{5\pi}{4},0)[/tex]