Respuesta :
Answer:
Part 1) option D) No solutions
Part 2) option C [tex]y=9[/tex]
Part 3) option E [tex]E(0,-3)[/tex]
Step-by-step explanation:
Part 1) we have
[tex]3x-2y=6[/tex] -------> equation A
[tex]6x-4y=14[/tex] -------> equation B
Divide the equation B by [tex]2[/tex] both sides
[tex]6x-4y=14[/tex] --------> [tex]3x-2y=7[/tex]
Equation A and equation B represent a parallel lines, because their have the same slope [tex]m=\frac{3}{2}[/tex]
therefore
The system of equation does not have solution
Part 2) we have
[tex]5x+4y=1[/tex] -------> equation A
[tex]4x+3y=-1[/tex] -------> equation B
Multiply the equation A by [tex]4[/tex] both sides
[tex]5x+4y=1[/tex] -------> [tex]20x+16y=4[/tex] -------> equation C
Multiply the equation B by [tex]-5[/tex] both sides
[tex]4x+3y=-1[/tex] ------> [tex]-20x-15y=5[/tex] ------> equation D
Adds equation C and equation D
[tex]20x+16y=4\\-20x-15y=5\\---------\\16y-15y=4+5\\ y=9[/tex]
Part 3) we have
[tex]y<2x+4[/tex] -------> inequality A
[tex]y<-2x+2[/tex] -------> inequality B
we know that
If a point lie in the solution set of the system of inequalities, then the point must be satisfy the inequalities of the system
a) point [tex]C(1,0)[/tex]
Verify inequality A
[tex]0<2(1)+4[/tex]
[tex]0<6[/tex] -------> is true
Verify inequality B
[tex]0<-2(1)+2[/tex]
[tex]0<0[/tex] -----> is not true
therefore
the point [tex]C(1,0)[/tex] does not lie in the solution set of the system of inequalities
b) point [tex]D(-5,-2)[/tex]
Verify inequality A
[tex]-2<2(-5)+4[/tex]
[tex]-2<-6[/tex] -------> is not true
therefore
the point [tex]D(-5,-2)[/tex] does not lie in the solution set of the system of inequalities
c) point [tex]E(0,-3)[/tex]
Verify inequality A
[tex]-3<2(0)+4[/tex]
[tex]-3<4[/tex] -------> is true
Verify inequality B
[tex]-3<-2(0)+2[/tex]
[tex]-3<2[/tex] -----> is true
therefore
the point [tex]E(0,-3)[/tex] lies in the solution set of the system of inequalities
d) point [tex]F(-1,5)[/tex]
Verify inequality A
[tex]5<2(-1)+4[/tex]
[tex]5<2[/tex] -------> is not true
therefore
the point [tex]F(-1,5)[/tex] does not lie in the solution set of the system of inequalities