Respuesta :

       t = 3u / e    Multiply both sides by e
   t(e) = 3u         Divide both sides by 3
t(e)/3 = u           Switch the sides to make it easier to read
      u = t(e) / 3

Answer:

The required value of U is [tex]U=\frac{TE}{3}[/tex]

Step-by-step explanation:

Consider the provided equation.

[tex]T=\frac{3U}{E}[/tex]

We need to solve the equation for U.

Multiply both of the side of the equation by E

[tex]T\times E=\frac{3U}{E}\times E[/tex]

[tex]TE=3U[/tex]

Now isolate the variable U. Dividing both the side 3.

[tex]TE\times \frac{1}{3}=\frac{3U}{3}[/tex]

[tex]\frac{TE}{3}=U[/tex]

Hence, the required value of U is [tex]U=\frac{TE}{3}[/tex]