Respuesta :

the answer is C , 10

Answer:  The number of terms in the binomial expansion of [tex](3x-5)^9[/tex] is 10.

Step-by-step explanation:  We are given to find the number of terms in the following binomial expansion:

[tex]B=(3x-5)^9~~~~~~~~~~~~~~~~~~~~~(i)[/tex]

We know that

the number of terms in the binomial expansion of [tex](x+y)^p[/tex]is given by

[tex]N_t=p+1.[/tex]

In the given binomial expansion (i), we have

[tex]p=9.[/tex]

Therefore, the number of terms in the given binomial expansion will be

[tex]N_t=p+1=9+1=10.[/tex]

Thus, there are 10 terms in the binomial expansion of [tex](3x-5)^9.[/tex]