Respuesta :

Answer:

The equation of parabola is [tex]y^2=-32x[/tex].

Step-by-step explanation:

It is given that the directrix of the parabola is x = 8 and focus is (-8, 0).

Since directrix is x=8, which a vertical line therefore the parabola is algo the x-axis.

The standard for of the parabola is

[tex](y-k)^2=4p(x-h)[/tex]

Where (h+p,k) is focus and [tex]x=h-p[/tex] is the directrix.

Since focus of the parabola is (-8,0)

[tex](h+p,k)=(-8,0)[/tex]

[tex]k=0[/tex]

[tex]h+p=-8[/tex]             .... (1)

The directrix of the parabola is x= 8

[tex]h-p=8[/tex]               .... (2)

Add equation (1) and (2).

[tex]2h=0[/tex]

[tex]h=0[/tex]

Put this value in equation 1.

[tex]p=-8[/tex]

Therefore h=0, k=0 and p=-8.

[tex](y-0)^2=4(-8)(x-0)[/tex]

[tex]y^2=-32x[/tex]

Therefore equation of parabola is [tex]y^2=-32x[/tex].

Ver imagen DelcieRiveria