Respuesta :
PART A:
As we know that gravitational force is given by
[tex]F=\frac{GMm}{r^2}[/tex]
Here we know that
G = Gravitational constant.
M = mass of the sun = [tex]1.99 \times 10^{30} kg[/tex]
m= mass of the Earth = [tex]6 \times 10^{24} kg[/tex]
r = distance between them =[tex]1.5 \times 10^{11}[/tex]
Sonow we have
[tex]F=\frac{(6.67\times 10^{−11})(1.99\times 10^{30})(6\times 10^{24})}{ (1.5\times 10^{11})²}[/tex]
[tex]F=3.53 \times 10^{22}N[/tex]
Part B)
As we know that gravitational force is given by
[tex]F=\frac{GMm}{r^2}[/tex]
Here we know that
G = Gravitational constant.
M = mass of the moon = [tex]7.36 \times 10^{22} kg[/tex]
m= mass of the Earth = [tex]6 \times 10^{24} kg[/tex]
r = distance between them =[tex]3.84 \times 10^{8}[/tex]
Sonow we have
[tex]F=\frac{(6.67\times 10^{−11})(7.36\times 10^{22})(6\times 10^{24})}{ (3.84\times 10^{8})²}[/tex]
[tex]F=1.99 \times 10^{20}N[/tex]
a. The gravitational force of the sun on the earth is [tex]3.54\times 10^{22}[/tex] Newton.
b. The gravitational force of the moon on the earth is [tex]2.0 \times 10^{20}[/tex] Newton.
c. The percent of the moon's force to that of the sun's force is 0.57%
Given the following data:
- Mass of sun = [tex]1.99 \times 10^{30}[/tex] kg
- Distance = [tex]1.55 \times 10^{11}[/tex] meter.
- Mass of moon = [tex]7.36 \times 10^{22}[/tex] kg
- Distance = [tex]3.84 \times 10^{8}[/tex] meter.
- Mass of earth = [tex]6.0\times 10^{24}[/tex] kg
- Gravitational constant = [tex]6.67\times 10^{11}[/tex]
a. To find the gravitational force of the sun on the earth:
Mathematically, Newton's Law of Universal Gravitation is given by the formula:
[tex]F = G\frac{M_1M_2}{r^2}[/tex]
Where:
- F is the gravitational force.
- g is the gravitational constant.
- M is the masses of object.
- r is the distance between centers of the masses.
Substituting the given parameters into the formula, we have;
[tex]F = 6.67\times 10^{-11} \frac{(1.99 \times 10^{30} \times 6.0 \times 10^{24})}{(1.5 \times 10^{11})^2}\\\\F = 6.67\times 10^{-11} \frac{(1.194 \times 10^{55}) }{2.25 \times 10^{22}}\\\\F = \frac{7.96 \times 10^{44} }{2.25 \times 10^{22}}[/tex]
F = [tex]3.54\times 10^{22}[/tex] Newton.
b. To find the gravitational force of the moon on the earth:
[tex]F = 6.67\times 10^{-11} \frac{(7.36 \times 10^{22} \times 6.0 \times 10^{24})}{(3.84 \times 10^{8})^2}\\\\F = 6.67\times 10^{-11} \frac{(4.42 \times 10^{47}) }{1.47 \times 10^{17}}\\\\F = \frac{2.95 \times 10^{37} }{1.47 \times 10^{17}}[/tex]
F = [tex]2.0 \times 10^{20}[/tex] Newton.
c. To find what percent is the moon's force to that of the sun's force:
[tex]Percent = \frac{2.0 \times 10^{20}}{3.54\times 10^{22}} \times 100[/tex]
Percent = 0.57%
Read more: https://brainly.com/question/21511416