Blood is accelerated from rest to 30.0 cm/s in a distance of 1.80 cm by the left ventricle of the heart. How long does the acceleration take?

Respuesta :

Answer:

Acceleration will take for 0.12 seconds.

Explanation:

Given:

Initial velocity of the blood, [tex]v_i[/tex] = 0 m/s

Final velocity of the blood, [tex]v_f[/tex] = 30 cm/s = 0.3 m/s

Distance to be considered, [tex]x[/tex] = 1.80 cm = 0.018 m

We have to find the time taken to covered the said distance.

Let the time taken be "t" seconds.

Equation of motion:

⇒ [tex]v_f=v_i+at[/tex] ...equation (i)

⇒ [tex]x=v_it+\frac{at^2}{2}[/tex]  ...equation (ii)

Now,

Using equation (i) we can say that:

⇒ [tex]v_f=v_i+at[/tex]

⇒ [tex]0.3=0+at[/tex]

⇒ [tex]0.3=at[/tex]            ...equation (iii)

Plugging x = 0.018 m in equation (ii).

⇒ [tex]x=v_it+\frac{at^2}{2}[/tex]

⇒ [tex]0.018=0+\frac{(at)(t)}{2}[/tex]   ...breaking at^2 as (at)(t)

⇒ [tex]0.018=\frac{(at)(t)}{2}[/tex]

⇒ [tex]0.018=\frac{0.3\times (t)}{2}[/tex]      ...plugging at=0.3 from equation (iii)

⇒ [tex]0.018\times 2=\frac{0.3\times (t)}{2}\times 2[/tex]

⇒ [tex]0.036=0.3\times (t)[/tex]

⇒ [tex]\frac{0.036}{0.3} =\frac{0.3\times t}{0.3}[/tex]

⇒ [tex]0.12\ s = t[/tex]

The acceleration will take for 0.12 seconds.