Respuesta :

Answer:

[tex](D)x^{3/4}y^{1/2}[/tex]

Step-by-step explanation:

We are required to simplify the expression: [tex](x^{1/2}y^{1/3})(x^{1/4}y^{1/6})[/tex]

This is a product and the first thing we will do is to collect like terms:

[tex](x^{1/2}y^{1/3})(x^{1/4}y^{1/6})=x^{1/2}x^{1/4}y^{1/3}y^{1/6}[/tex]

Next, we apply the addition law of indices: [tex]x^a X x^b =x^{a+b}[/tex]

[tex]x^{1/2}x^{1/4}y^{1/3}y^{1/6}=x^{1/2+1/4}y^{1/3+1/6}\\\\=x^{3/4}y^{1/2}[/tex]

Therefore, [tex](x^{1/2}y^{1/3})(x^{1/4}y^{1/6})=x^{3/4}y^{1/2}[/tex]