A 100 - foot fence is used to enclose a rectangular land plot. If the area of the land plot is 456 square feet, which equation can be used to determine the length (x) of the land plot?

Respuesta :

Answer:

[tex]x^2-50x+456=0[/tex]

Step-by-step explanation:

GIVEN: A [tex]100\text{ foot}[/tex] fence is used to enclose a rectangular land plot. If the area of the land plot is [tex]456\text{ feet}^2[/tex].

TO FIND: equation to determine the length [tex]x[/tex] of the land plot.

SOLUTION:

total length of fence [tex]=100\text{ foot}[/tex]

let the width of land plot be [tex]y[/tex]

perimeter of plot [tex]=2(x+y)=100[/tex]

                            [tex]x+y=50[/tex]

area of rectangular plot [tex]=\text{length}\times\text{breadth}[/tex]

                                       [tex]xy=456[/tex]

                                      [tex]y=\frac{456}{x}[/tex]

putting value of [tex]y[/tex]

[tex]x+\frac{456}{x}=50[/tex]

[tex]x^2-50x+456=0[/tex]

Hence required equation to get length [tex]x[/tex] of land plot is [tex]x^2-50x+456=0[/tex]

on solving

[tex]x=38,12[/tex]

possible length of land plot is [tex]38\text{ foot}[/tex] and [tex]12\text{ foot}[/tex]