Respuesta :

z= r(cosθ+i sinθ) is the required polar form where, r = √41 and θ =π- [tex]tan^{-1} (\frac{5}{4} )[/tex]

Step-by-step explanation:

Given,

-4+5i is a complex number.

To find the polar form.

Formula

z=x+iy

r² = mod of (x²+y²)

θ = [tex]tan^{-1} (\frac{y}{x} )[/tex]

So, the polar form will be z=r(cosθ+i sinθ)

Now,

r² =(-4)²+5² = 41

or, r = √41

θ =π- [tex]tan^{-1} (\frac{5}{4} )[/tex] [ since the point is in second quadrant]

Hence,

z= r(cosθ+i sinθ) is the required polar form where, r = √41 and θ =π- [tex]tan^{-1} (\frac{5}{4} )[/tex]