If the concentration of the fluid inside a tree is about 0.15 M greater than the groundwater that bathes the roots, how high will a column of fluid rise in the tree at 19°C? Assume that the density of the fluid is 1.1 . (The density of mercury is 13.6 .) m

Respuesta :

Answer:

The height is [tex]h =37.17m[/tex]

Explanation:

From the question we are told that

           The concentration inside a is tree [tex]M= 0.15M[/tex]

           The temperature condition is [tex]T = 19^oC = 19+ 273 = 292K[/tex]

          The density of the fluid is  [tex]\rho = 1.1 g/cm^3[/tex]

          The density of mercury is [tex]\rho__{Hg} = 13.6 g/cm^3[/tex]

Generally osmotic pressure experience is mathematically represented as

              [tex]P_o =MRT[/tex]

    Where R is the universal gas constant with a value of R = 00821 L.atm/K/mol

             [tex]P_o = 0.15 * 0,0821* 292[/tex]

                 [tex]=3.59598 atm[/tex]

Converting to cm of Mercury

             [tex]P_o = 3.59598 * 76 cm of Hg[/tex]

                  [tex]= 273.29 \ cm \ of \ Hg[/tex]

Generally pressure is mathematically represented as

               [tex]P = \frac{Height }{Density }[/tex]

 Now making height the subject

              [tex]Height = pressure * Density[/tex]

Where pressure is  [tex]= 273.29 \ cm \ of \ Hg[/tex]

        and  Density is [tex]\rho__{Hg} = 13.6 g/cm^3[/tex]

So we have

             [tex]Height (h) = 273.29 * 13.6[/tex]

                              [tex]= 3716.8 cm[/tex]

In meters          h [tex]= \frac{3716.8}{100} = 37.17m[/tex]

                      [tex]h =37.17m[/tex]

Answer:

The fluid column will rise a height of 3720.96 cm

Explanation:

The osmotic pressure is equal:

[tex]P_{osm} =MRT[/tex]

Where

M = 0.15 M

T = 19ºC = 292 K

Replacing:

[tex]P_{osm} =0.15*0.0821*292=3.6atm=273.6cmHg[/tex]

The height is:

[tex]h=P_{osm} \rho[/tex]

Where

ρ = 13.6 g/cm³

Replacing:

[tex]h=273.6*13.6=3720.96cm[/tex]