Answer:
a) The maximum contact pressure is 274.58 MPa and the width of contact is 0.058 mm
b) The maximum shear stress is 82.37 MPa at a distance of 0.023 mm
Explanation:
Given data:
L = 20 mm
F = 250 N
r₁ = 10 mm
r₂ = 15 mm
v = 0.3
E = 2.07x10⁵ MPa
[tex]A=\frac{1-V_{1}^{2} }{E_{1} }-\frac{1-V_{2}^{2} }{E_{2} } =\frac{1-0.3^{2} }{2.07x10^{5} } *2=8.79x10^{-6}[/tex]
a) The maximum contact pressure is:
[tex]P=0.564*\sqrt{\frac{F*(\frac{1}{r_{1} }+\frac{1}{r_{2} }) }{LA} } =0.564*\sqrt{\frac{250*(\frac{1}{10} +\frac{1}{15} )}{20*8.79x10^{-6} } } =274.58MPa[/tex]
The width of contact is:
[tex]b=1.13*\sqrt{\frac{FA}{L(\frac{1}{r_{1} }+\frac{1}{r_{2} }) } } =1.13*\sqrt{\frac{250*8.79x10^{-6} }{20*(\frac{1}{10} +\frac{1}{15} )} } =0.029mm\\2*b=0.058mm[/tex]
b) According the graph elastic stresses below the surface, for v = 0.3, the maximum shear stress is
T = 0.3*P = 0.3 * 274.58 = 82.37 MPa
At a distance of
0.8*b = 0.8*0.029 = 0.023 mm