An artist creates a cone-shaped sculpture for an art exhibit. If the sculptor is 5 feet tall and has a base with a circumference of 20.096 feet, what is the volume of the sculpture? Use 3.14 for pie

Respuesta :

Answer:

The volume of the sculpture is 53.589 ft³

Step-by-step explanation:

Here, we note that the volume of a right circular cone is given by

[tex]V = \pi r^2\frac{h}{3}[/tex]

Where:

V = Volume of the right circular cone

r = Radius of the base of the cone

h = Height of the cone = 5 ft

π = Constant = 3.14

However, the circumference is given as

Circumference = 20.096 ft

The formula for circumference  is

Circumference  = 2πr

Therefore, 2πr = 20.096 ft and

[tex]r = \frac{20.096 ft}{2\times \pi } = \frac{20.096 ft}{2\times 3.14}=3.2\, ft[/tex]

Therefore,

[tex]V = \pi r^2\frac{h}{3} = 3.14 \times 3.2^2 \times\frac{5}{3} = 53.589 \, ft^3[/tex].

Answer:

V = 53.5893 ft^3 .... (= 53.6 ft^3)

Step-by-step explanation:

Given:-

- The height of cone, h = 5 ft

- The circumference of base, c = 20.096 ft

Find:-

What is the volume of the cone-shaped sculpture?

Solution:-

- The volume of a cone (V) is given by:

                               V = pi/3*r^2*h

Where,                    r = radius of circular base

- To determine (r) we will use the formula for the circular base:

                               c = 2*pi*r

                               r = 20.096 / 2*3.14

                               r = 3.2 ft

- Now evaluate the volume V:

                              V = 3.14/3 * (3.2)^2 * 5

                              V = 53.5893 ft^3 .... (= 53.6 ft^3)