Use the Miller–Rabin test on each of the following numbers. In each case, either provide a Miller–Rabin witness for the compositeness of n, or conclude that n is probably prime by providing 10 numbers that are not Miller–Rabin witnesses for n.(a) n = 1105.(b) n = 294409(c) n = 294439(d) n = 118901509(e) n = 118901521(f) n = 118901527(g) n = 118915387

Respuesta :

Answer:

In miller-Rabin test, write  n-1 as product of an odd number 'm' and 'a' power of 2.

∴  [tex]n - 1 = mx2^k[/tex]

The format test in 'a" can be written as [tex]a^{n-1} = a^{mx2^k}[/tex]

find [tex]\bar I = a^mmodn[/tex]

⇒ if [tex]\bar I = 1[/tex] , n is a composite, otherwise 'n' is a prime.

Step-by-step explanation:

see details

Ver imagen akindeleot
Ver imagen akindeleot
Ver imagen akindeleot
Ver imagen akindeleot
Ver imagen akindeleot